Community Detection in Social Networks through Community Formation Games
نویسندگان
چکیده
We introduce a game-theoretic framework to address the community detection problem based on the social networks’ structure. The dynamics of community formation is framed as a strategic game called community formation game: Given a social network, each node is selfish and selects communities to join or leave based on her own utility measurement. A community structure can be interpreted as an equilibrium of this game. We formulate the agents’ utility by the combination of a gain function and a loss function. Each agent can select multiple communities, which naturally captures the concept of “overlapping communities”. We propose a gain function based on Newman’s modularity function and a simple loss function that reflects the intrinsic costs incurred when people join the communities. We conduct extensive experiments under this framework; our results show that our algorithm is effective in identifying overlapping communities, and is often better than other algorithms we evaluated especially when many people belong to multiple communities.
منابع مشابه
An Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks
The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...
متن کاملOverlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملCommunity Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملUtilizes the Community Detection for Increase Trust using Multiplex Networks
Today, e-commerce has occupied a large volume of economic exchanges. It is known as one of the most effective business practices. Predicted trust which means trusting an anonymous user is important in online communities. In this paper, the trust was predicted by combining two methods of multiplex network and community detection. In modeling the network in terms of a multiplex network, the relat...
متن کاملتشخیص اجتماعات ترکیبی در شبکههای اجتماعی
One of the great challenges in Social Network Analysis (SNA) is community detection. Community is a group of vertices which have high intra connections and sparse inter connections. Community detection or Clustering reveals community structure of social networks and hidden relationships among their constituents. By considering the increase of datasets related to social networks, we need scalabl...
متن کامل